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Nonlinear coupling of fluctuating drag and lift
on cylinders undergoing forced oscillations

By B.-H. KIM† AND D. R. WILLIAMS
Fluid Dynamics Research Center, Illinois Institute of Technology, Chicago, IL 60616, USA

(Received 21 June 2005 and in revised form 30 December 2005)

Experiments with cylinders undergoing forced oscillations show a coupling between
the fluctuating lift and drag forces as a result of nonlinear wave interactions. The
fluctuating lift and drag components are computed from the instantaneous pressure
around the azimuth of a circular cylinder measured with an array of miniature
microphones. Quadratic nonlinear interaction between the von Kármán vortex-
shedding modes and the forcing field produces sum and difference modes, which
appear in the spectrum of the surface pressure signals when the forcing frequency is
different from the von Kármán vortex-shedding frequency, fo. The spatial symmetry
of the interacting modes determines whether the combination modes appear in
the lift spectrum or the drag spectrum. Furthermore, the spatial symmetry of the
modes can be predicted from the symmetries of the two interacting parent modes.
Crossflow excitation of the cylinder produces combination modes that appear in the
drag spectrum. Consequently, attempts to enhance the fluctuating lift by crossflow
excitation will necessarily affect the fluctuating drag through nonlinear interaction.

1. Introduction
The ability to predict accurately the response of a structure to unsteady excitation

by a flow field has been a major challenge to engineers. Von Kármán vortex shedding
behind a cylinder, as shown in figure 1, may excite resonant oscillations in a structure
when there is a match between the flow and structural frequencies. Energy from
the flow at specific frequencies is transferred to the body, which may lead to
large-amplitude oscillations and structural failure. One example is the failure of
a thermocouple well in a sodium pipe in a prototype fast breeder reactor which
was described by Yamaguchi et al. (1997). Under certain conditions, simplifying
approximations about the fluid–structure interaction can be made. For example, when
there is a large difference between the vortex-shedding frequency and the structural
modes, then the flow is decoupled from the structure. However, without the ability to
predict when coupling will occur, the engineer cannot be certain whether the simpler
approach is correct.

Many elements of the flow-induced vibration problem are illustrated by considering
the forces acting on a towed cable. Long cables have several discrete structural modes.
The vortex-shedding frequency usually varies along the length of the cable, because
of the cable angle with respect to the flow, or end effects. Non-resonant frequencies
do not contribute to the excitation, but are still important to the dynamics of the
cable because they act to damp the motion. In the regions along the cable where
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Cylinder

Figure 1. Von Kármán vortex shedding behind a cylinder (Re = 1.52 × 104).

there is a match between the vortex-shedding frequency and one of the structural
modes, the appropriate conditions exist for energy transfer from the flow to the body
which can excite vibrations. The phenomenon of ‘lock-in’ or ‘synchronization’ occurs
in these regions when the cable amplitude is sufficiently large. Vandiver (1993) used
a Green’s function approach to model structural vibrations of this type. Jong (1984)
used bi-spectral techniques to investigate the coupling between crossflow and in-line
motion of a long flexible cable under lock-in and non-lock-in cases. With the cross-
bicoherence analysis, Jong established that a quadratic correlation existed between
the crossflow and in-line responses of the flexible cable.

Flow-induced vibrations of long cylindrical structures usually have the largest
amplitude in the crossflow direction. Although the fluctuating drag coefficients are
normally lower and the corresponding streamwise displacements are smaller, they
should not be neglected. The thermocouple failure mentioned above occurred because
of in-line oscillations. It is also known (see Griffin & Ramberg 1982) that the mean
drag on the body will more than double when the structure experiences flow-induced
vibration and lock-in. Nevertheless, workers have tended to focus more on the
mechanics of the lift forces.

Because of the importance of the lift forces, particularly in the case of modelling
flow-induced vibrations, the effects of fluctuating drag are often ignored or lumped
into a simplified damping model. The commonly used Hartlen & Currie-type (see
Hartlen & Currie 1970) wake–oscillator models couple fluctuating lift from the wake
with a structural oscillator model to determine the regions of ‘lock-in’. Vandiver’s
approach ignores fluctuating drag, but includes the instantaneous crossflow velocity
in a linear model to account for hydrodynamic damping of the cylinder motion.
Olinger & Sreenivasan (1988) used a modern dynamical systems approach to model
regions of lock-in based on forced crossflow oscillations, but the approach does not
include fluctuating drag.

Historically, experiments were conducted in three different ways to study the
interaction between the wake and the structure. The first type is ‘free-oscillation’
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where the cylinder is mounted on springs and the unsteady loading from the wake
provides the external force. The second type is ‘forced-oscillation’ using a separate
controllable forcing mechanism to move the cylinder. The third type introduced by
Hover, Techet & Triantafyllou (1998) is a hybrid of the first two. It uses feedback
from the flow to force the cylinder in response to the fluid force, which allows the
effective damping and inertia of the cylinder to be independently controlled. In the
latter two cases, side-to-side motion associated with fluctuating lift has been studied
almost exclusively.

Here we report on experiments forcing a rigid cylinder, designed to study the non-
linear response of the wake to open-loop forcing with particular emphasis placed
on the nonlinear interaction between fluctuating lift and drag. Similarly to the
experiments by Jong (1984) with a flexible cable, it will be shown that a quadratic
nonlinearity connects the fluctuating lift (crossflow motion) and drag (in-line motion)
together. In contrast to Jong’s measurements of cable acceleration, we measure the
instantaneous pressure distribution around the mid-section of the cylinder to obtain
the fluctuating lift and drag coefficients. It will be shown that depending on the
symmetry of the forcing field, the oscillation of the structure at a particular frequency
in one direction produces sum and difference modes in the orthogonal direction.

An additional motivation for this forced cylinder experiment is to establish a
connection between the instantaneous surface forces and the nonlinear behaviour
of the wake. In an earlier experiment by Williams, Mansy & Amato (1992), the
response of a stationary cylinder wake to symmetric and antisymmetric disturbances
was investigated by measuring the wake velocity profiles at x/D= 4 and 5. It was
shown that the spatial symmetry of the combination modes formed by nonlinear
interactions between the forcing field and the von Kármán vortex street followed a
simple set of symmetry rules. In this paper, it will be shown that the instantaneous
lift and drag forces acting on the oscillating cylinder follow the same set of rules.

2. Experimental set-up
The ‘forced-oscillation’ approach was used in this experiment, as a way to study

the unsteady forces on the structure when the system is not in resonance. The
cylinder model used was 50.8 mm diameter, D, mounted vertically in a wind tunnel
(figure 2). The cylinder was 610 mm long with circular end plates placed 510 mm
apart which gives an aspect ratio of 10:1. The cross-section of the wind-tunnel test
section was 610 mm by 410 mm. The free-stream speed measured with a Pitot tube
and micromanometer was held constant at 4.5 ± 0.2 m s−1. The Reynolds number
based on cylinder diameter was 1.52 × 104. The coordinate system was chosen with
the origin at the centre of the cylinder, and the x-axis aligned with the flow direction.
The z-axis is coincident with the cylinder axis, and the y-axis transverse to the
flow. The azimuthal coordinate, defines θ = 0 to be at the forward stagnation point.
The von Kármán vortex-shedding frequency was 17.5 ± 0.5Hz corresponding to a
Strouhal number of 0.197.

Forcing of the cylinder motion was done with a PMI printed circuit motor connected
to a Scotch-yoke mechanism. The Scotch-yoke mechanism provides a very clean
sinusoidal motion, such that the spectrum of the displacement signal showed the first
harmonic amplitude to be four orders of magnitude lower than the fundamental.
The peak-to-peak displacement amplitude of the cylinder was measured with a dial
indicator. The entire apparatus could be rotated by 90◦, allowing the cylinder to move
in either the crossflow or in-line direction as indicated in figure 3.
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Figure 2. Cylinder in wind-tunnel test section showing forcing mechanism.

Air flow Air flow 90°

180°

(a) (b)

–90°

0°

Diameter = 2 in.

Figure 3. Forcing directions. (a) Crossflow forcing, (b) in-line flow forcing.

Measurements of the fluctuating surface pressure were made with 18 miniature
Knowles EM-3068 microphones. The microphones were mounted inside the cylinder
at its midsection. Starting at the forward stagnation point, they were spaced 20◦ apart
around the azimuth. The data were acquired digitally with a 12 bit analogue-to-digital
converter in a Pentium-based computer. Signals from the microphones were bandpass
filtered between 6 Hz and 300 Hz.
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The Knowles microphones were dynamically calibrated against a B&K model 4310
microphone, which in turn had been calibrated using a B&K sound level calibrator
(type 4321.) An 18 Hz sound wave was produced with a loudspeaker, using sufficient
amplitude to reach fluctuating pressure levels matching those in the experiment.
Repeatability measurements were done by rotating the cylinder, so that the Knowles
microphones in the cylinder would overlap their readings. The uncertainty in the Cp

measurements was determined to be �C ′
p = 0.0024. The local C ′

p values ranged from
0.02 to 0.17 giving a relative C ′

p error ranging from 12 % to 1.4 %. The fluctuating
lift and drag coefficients are computed as a weighted sum of the C ′

p measurements,
so the relative error in the C ′

l and C ′
d measurement is approximately 3 %.

3. Results
3.1. Spectral analysis

The fluctuating pressure coefficient C ′
p on the surface of the cylinder is defined by

C ′
p = p′/ρU 2/2 where p′ is the root-mean-square pressure fluctuation measured by

the Knowles microphones. Fluctuating lift and drag coefficients were computed using
the fluctuating pressure C ′

p(t) from the instantaneous pressure signals taken around the
cylinder. The instantaneous sectional lift and drag were computed using

C ′
l (t) =

1

2

M∑

i=1

C ′
p(t, θi) sin(θi)�θ, (3.1)

C ′
d(t) =

1

2

M∑

i=1

C ′
p(t, θi) cos(θi)�θ, (3.2)

where M is the maximum number of measurement points around the cylinder. These
equations neglect the fluctuating viscous forces acting on the cylinder. According to
Zdravkovich (1997), the viscous drag forces at Re = 15 200 are negligible compared
to the pressure drag and lift.

Figure 4 shows the lift and drag fluctuations under the lock-in condition with von
Kármán vortex-shedding frequency of 18 Hz and Reynolds number, Re =1.52 × 104.

The signals show that the frequency of drag fluctuations is twice that of lift
fluctuations, as it is always under lock-in conditions.

The power spectra computed in this study are based on the pressure fluctuations on
the cylinder surface. In order to reduce the statistical variance, the data were divided
into 10 sets of 512(29) points. The frequency resolution for the spectra was 0.389 Hz
with a data-sampling rate of 200 samples per second. Figures 5(a) and 5(b) show
the pressure coefficient spectra distributions plotted against the azimuthal angles in
crossflow and in-line forced oscillations, respectively. The dominant peaks correspond
to the von Kármán vortex-shedding at fo = 17.5 Hz and the forcing modes, fe = 14 Hz.
The von Kármán vortex-shedding mode has a maximum peak located 80◦ from the
forward stagnation point. The maximum of the sum mode (fe + fo =32.5 Hz) of the
two primary frequencies appears near 180◦ in the crossflow forcing. The harmonic
modes show that the nonlinear effects are significant on the cylinder surface. In
the base region, the second harmonic of the vortex shedding is noticeable. These
second harmonic modes contribute to the fluctuating drag forces, which have twice
the frequency of the lift fluctuating forces.
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Figure 4. Time series of lift and drag coefficients with a stationary cylinder (Re = 1.52 × 104).

The fluctuating pressures acting on the stationary cylinder were decomposed into
the fluctuating lift and drag time series by equations (3.1) and (3.2). Figures 6(a)
and 6(b) show C ′

l and C ′
d spectra with the stationary cylinder, respectively. The von

Kármán vortex-shedding mode fo at 18 Hz and its second harmonic 3fo at 54 Hz
appear in the lift coefficient spectrum, while the first harmonic mode, 2fo is seen at
36 Hz in the drag coefficient spectrum. The fluctuating lift coefficient spectrum shows
that the majority of the energy remains at the vortex-shedding mode at fo, while the
first harmonic of the vortex shedding at 2fo is dominant in the drag spectrum for the
stationary cylinder case. It is obvious that the antisymmetric Karman vortex-shedding
mode appears in the lift spectrum. The peaks at 22 Hz, 39 Hz and 82 Hz in the spectra
are wind-tunnel resonance frequencies. However, because there is no phase coherence
between these tunnel modes and the wake modes, i.e. no bicoherence peaks, then
there is no significant interaction between the tunnel modes and the wake modes.

Figure 7 shows the lift and drag coefficient spectra for the crossflow forced case
with forcing frequency of 14 Hz. The forcing and von Kármán vortex-shedding modes
are peaks at fe = 14 Hz and fo =17.5 Hz in the lift spectrum, respectively. The first
harmonic of the von Kármán vortex-shedding mode, 2fo appears at 35 Hz in both
the lift and drag spectra. In the drag coefficient spectrum, the first harmonic 2fo of
the von Kármán vortex frequency and the sum mode fo + fe at 31.5 Hz appear as
dominant peaks in figure 7(b). Note that the combination modes appear in the drag
coefficient spectrum only when the forcing is in the crossflow direction.

When the cylinder is forced to oscillate in the in-line direction, combination modes
appear in both the lift and drag spectra. Figure 8(a) shows the lift coefficient spectrum
with the fo ± fe combination modes. The difference mode appears at 3.5 Hz and the
sum mode at 31.5 Hz. The in-line forcing produces disturbances that are spatially
symmetric about the wake centreline and on the surface of the cylinder; therefore, the
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Figure 5. C ′
p spectra along the azimuthal angles, (a) crossflow forcing (α = 0.07) and

(b) inline forcing (α = 0.07).

peak for symmetric forcing mode can be seen in the drag spectrum with the frequency
of 14 Hz.

To detect evidence of the quadratic nonlinear coupling between the drag and lift
acting on the forced cylinder, higher orders of spectral techniques based on the Fourier
transform such as the cross-bispectrum and cross-bicoherence are introduced (Kim &
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Powers 1979). The cross-bispectrum in equation (3.3) and cross-bicoherence in
equation (3.4) can be expressed as:

Bxxy(fi, fj ) = lim
T →∞

1

T
E[X∗(fi)X

∗(fj )Y (fi + fj )], (3.3)
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b2
c (fi, fj ) =

|Bxxy(fifj )|2
E[|X(fi)X(fj )|2]E[|Y (fi + fj )|2]

, (3.4)

where X(f ) = FFT (x(t)), Y (f ) = FFT (y(t)) and E[. . .] denotes a time average, where
X∗ is the complex conjugate of X.

In nonlinear systems, frequency components can interact with one another to form
new components at their sum and difference frequencies, commonly referred to as
combination modes. The phases of the combination modes are related to the phases
of the primary interacting ‘parent’ modes. The preservation of the phase information
in the bispectrum is an important property, which is useful for investigating nonlinear
quadratic coupling. If the three modes X(fi), X(fj ) and Y (fi + fj ) are uncorrelated,
they will have independent random phases, and the bispectrum will result in a near-
zero value through the statistical averaging process. On the other hand, when the
three modes are correlated the bicoherence will approach unity.

When computing the cross-bicoherence with two sets of time series data x(t) and
y(t), one should be note that y(t) is the signal containing the resultant sum and
difference modes from the primary modes in x(t). In figure 9, the cross-bicoherence
of x(t) = C ′

l (t), and y(t) = C ′
d(t) corresponding to the spectra shown in figures 6, 7

and 8 demonstrates that the lift and drag forces are coupled. The coupling between
lift and drag is obvious for the stationary cylinder case, as seen in figure 9(a).
The stationary cylinder shows two dominant peaks at (fx, fy) = (17.5, 17.5) and
(−17.5, 52.5) with bicoherence values at approximately 0.5. The spectral peak at
2fo(35 Hz = 17.5(fo) + 17.5(fo)) in the spectrum of C ′

d , shown earlier in figure 6b,
is generated by the self-interaction of the von Kármán vortex-shedding mode (fo).
What is not so obvious is the interaction of the fundamental and second harmonic of
the vortex-shedding mode (2fo = 3fo(52.5 Hz) − fo(17.5 Hz)), which also contributes
to the harmonic.

The magnitudes of the peaks appearing in the cross-bicoherence are summarized
below, along with the coupling relations between the peaks seen in the spectra of
figures 6, 7 and 8.

Stationary cylinder
(a) fo(17.5 Hz) + fo(17.5 Hz) → 2fo(35 Hz), b2

c (17.5, 17.5) = 0.74,
(b) 3fo(52.5 Hz) − fo(17.5 Hz) → 2fo(35 Hz), b2

c (52.5, −17.5) = 0.62.
Crossflow forcing
(a) fe(14 Hz) + fe(14Hz) → 2fe(28Hz), b2

c (14, 14) = 0.54,
(b) fo(18 Hz) + fo(18 Hz) → 2fo(36Hz), b2

c (18, 18) = 0.43,
(c) fo(18 Hz) + fe(14Hz) → fo + fe(32Hz), b2

c (18, 14) = 0.63,
(d) [2fo + fe](50 Hz) − fe(14Hz) → 2fo(36 Hz), b2

c (50, −14) = 0.53,
(e) [fo + 2fe](46Hz) − fe(14 Hz) → [fo + fe](32Hz), b2

c (46, −14) = 0.48.
In-line flow forcing
(a) fo(17 Hz) + fo(17 Hz) → 2fo(34Hz), b2

c (17, 17) = 0.48,
(b) [(fo + fe)](31Hz) − fo(17 Hz) → fe(14Hz), b2

c (31, 14) = 0.62,
(c) [fo +2fe](60Hz) − [fo + 2fe](46 Hz) → fe, b

2
c (14Hz), b2

c (60, 46) = 0.48.
For the crossflow forcing cases, the peaks for the harmonics (fe and fo) and sum

mode (fe + fo), in the drag coefficient spectrum are coupled with the vortex-shedding
mode and forcing mode in the lift coefficient spectrum in figure 7. In the in-line forcing
cases, the vortex-shedding mode and sum mode in the lift spectrum are coupled with
2fo and fe in the drag spectrum. When x(t) = C ′

d(t) and y(t) = C ′
l (t) are chosen for

the bicoherence in the in-line forcing in figure 10, no significant coherence is detected,
because the combinations of fe, 2fe and 2fo modes in the drag spectrum cannot be
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coupled with fo, fo + fe, 3fo, and fo − fe modes in the lift spectrum in figure 8. It is
clear from the surface pressure measurements that in cases of forced oscillations, the
harmonic and combination modes play a role in the coupling between the fluctuating
drag and fluctuating lift forces, which is consistent with Jong’s measurements of cable
oscillations.

3.2. Decomposition into odd and even components

Previous experiments with disturbances introduced into the boundary layer of a
stationary cylinder (see Williams et al. 1992) determined that certain rules of symmetry
were followed in quadratic nonlinear interactions in the wake. The symmetry rules
are that combination modes have an even symmetry if the two parent modes are both
even or both odd functions. If the parent modes have opposite symmetries, then all
the combination modes are odd functions. To investigate whether the same rules are
followed with oscillating cylinders, the pressure field is decomposed into even and odd
functions. The technique was originally applied by Marasli, Champagne & Wygnanski
(1999), who decomposed wake velocity disturbances into even and odd functions
of y (crossflow direction), to determine whether the varicose mode of instability
agreed with linear instability theory, as did the sinuous mode in their previous
experiments. Sato (1970) also showed the velocity fluctuation of antisymmetric spectral
component distributions at the fundamental mode and symmetric distributions at the
first harmonic in the wake behind a flat plate. In this study, the same technique was
used to decompose the pressure disturbances on the surface of the cylinder into even
(symmetric) and odd (antisymmetric) components about the centreline stagnation
point.

Any function can be separated into even and odd functions about a chosen centre
point θ = 0. The decomposition process can be applied to the pressure distribution
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occurring on the surface of the cylinder. It is defined,

W (f, θi) = Weven(f, θi) + Wodd(f, θi), (3.5)

Weven =
W (f, θi) + W (f, −θi)

2
, (3.6)

Wodd =
W (f, θi) − W (f, −θi)

2
, (3.7)

where W (f, θi) is the complex Fourier transform of the pressure coefficient, C ′
p(t, θi).

The even and odd functions are obtained by adding and subtracting W (f, θi) at
opposing angles about the forward stagnation point as indicated in equations (3.6) and
(3.7). Figures 11, 12 and 13 show the real and imaginary parts of Fourier transformed
pressure coefficients, W (f, θi) around the cylinder at particular frequencies. The
magnitude and phase distributions of the even and odd components computed using
equations (3.6) and (3.7) are shown in figure 11(b, c), and figure 12(b, c).

To quantify whether a particular mode is primarily symmetric or antisymmetric,
the energy in the even and odd components of each mode is obtained by integrating
Weven and Wodd , around the cylinder with equations (3.8) and (3.9)

O(f ) =

M∑

i=1

Wodd(f, θi)W
∗
odd(f, θi)�θ, (3.8)

E(f ) =

M∑

i=1

Weven(f, θi)W
∗
even(f, θi)�θ, (3.9)

where M is the number of the pressure transducers. The ratio expresses the relative
energy ratio of the odd energy against the even energy in each mode. When O/E > 1
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Figure 12. Spatial decomposition of modes with crossflow forcing, fo =18Hz, fe = 14 Hz and
α = 0.07 (a) Real and imaginary parts, (b) even and odd components, (c) phase distributions.

the antisymmetric component of the mode is dominant, and when O/E < 1 the
symmetric components is dominant.

Figure 11 shows the magnitude and phase distributions with the stationary cylinder.
The side-to-side oscillations of the wake at the vortex-shedding mode fo = 17.5 Hz
produce a dominant odd component with a 180◦ phase shift occurring on the wake
centreline as expected for an antisymmetric mode. The relative energy ratios of
O/E = 54.9 are given in table 1. The first harmonic 2fo is symmetric (even) as
indicated by O/E =0.05. The first harmonic mode 2fo is the result of the self-
interaction of the antisymmetric (odd) vortex-shedding mode as shown in figure 9(a),
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Figure 13. In-line-flow forcing, fo = 18 Hz, fe = 14 Hz and α =0.07. (a) Real and imaginary
parts, (b) even and odd components, (c) phase distributions.

Mode Stationary Crossflow Inline

fo − fe 0.195 1.14
fe 14.12 0.096
fo 54.9 96.28 32.8
fo + fe 0.072 2.29
2fo 0.05 0.083 0.54
3fo 4.41 4.55 0.97

Table 1. Energy ratio (O/E) at different modes in three cases (α = 0.07).
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so that it becomes a symmetric mode (even). The second harmonic mode 3fo is
antisymmetric (odd) again with O/E = 4.41. The second harmonic is produced by the
nonlinear interaction between the antisymmetric (odd) vortex-shedding mode and the
symmetric (even) first harmonic mode.

When the cylinder is forced to oscillate in either the in-line or crossflow directions,
we assume the wake is being forced by predominantly symmetric or antisymmetric
disturbances, respectively. Figures 12 and 13 show the decompositions of the most
substantial modes with crossflow and in-line forcing; namely, the difference mode
fo − fe (4.5 Hz), the forcing mode fe (14.7 Hz), the von Kármán vortex-shedding
mode fo (18 Hz), the sum frequency mode fo + fe (32 Hz), the first harmonic, 2fo

(36 Hz) and the second harmonic 3fo (54 Hz). In the crossflow forcing case, the
difference mode (fo − fe) with O/E = 0.195 is a symmetric mode. The sum mode
(fo + fe) is also symmetric with an energy ratio of O/E = 0.072 (table 1). For the
sum mode shown in figure 12(b), the amplitude of the even function is clearly higher
than the corresponding odd functions. The observation that both combination modes
resulting from the crossflow forced oscillations are symmetric is consistent with the
symmetry rules described above.

On the other hand, when the forced oscillations are in the in-line direction, then
the symmetry rules predict that the combination modes will be antisymmetric. The
data in figure 13 show that magnitudes of odd components are slightly larger than
the even components, and the difference mode (fo − fe) and the sum mode (fo + fe)
have the energy ratio of O/E =1.14 and 2.28, respectively.

Antisymmetric (crossflow) forcing contributes energy to the odd components in the
von Kármán vortex mode. Figure 12(b) shows the majority of the energy remains in
the vortex-shedding mode. However, with the in-line forced oscillations at 14 Hz, the
vortex-shedding mode has the energy ratio O/E = 32.8 which is even lower than that
with the stationary cylinder. Increasing the symmetric forcing amplitudes reduces the
energy of the von Kármán vortex-shedding mode.

4. Discussion
4.1. Spatial symmetry properties in the wake

Williams et al. (1992) investigated the spatial symmetry of interacting modes by
observing the wake response to either symmetric or antisymmetric disturbances in
the boundary layer of the circular cylinder. In their experiment, it was shown that
the symmetry of the combination modes follows two fundamental rules described
earlier. If the cylinder is forced in the crossflow direction, then the difference and the
sum modes will be symmetric, because the antisymmetric vortex-shedding mode and
antisymmetric forcing mode produced symmetric combination modes. If the forcing is
in the streamwise direction, then the combination modes will be antisymmetric, since
the antisymmetric vortex-shedding mode interacts with the symmetric forcing mode
and produces the antisymmetric difference and sum modes. Therefore, the crossflow
forced oscillations affect not only the lift force, but also the fluctuating drag forces
through the increased energy in the combination modes. Similarly, the symmetric
forcing can affect the fluctuating lift forces as well as the fluctuating drag forces.
By the symmetry relations, we can predict the directions in which the first harmonic
mode (2fo) and the second harmonic (3fo) will channel energy.

A special case occurs when the cylinder is forced at the von Kármán shedding
frequency. Figure 14 shows the lift and drag coefficient spectra and their corresponding
cross-bicoherence when the cylinder is forced at the von Kármán vortex-shedding
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frequency. The spectra in figure 14 show that in-line forced oscillations at the frequency
of 18 Hz (fe = fo), produce a strong first harmonic mode 2fo in both the lift and drag
spectra simultaneously. The 2fo mode can be both antisymmetric and symmetric
by the symmetry rules. The self-interaction of the vortex-shedding mode at 18 Hz
produces the symmetric 2fo mode in the C ′

d spectrum, while the sum mode (fe + fo)
in the C ′

l spectrum in figure 14(a) will be antisymmetric since it is the result of the
interaction between the antisymmetric vortex-shedding mode (fo) and the symmetric
forcing mode (fe). The peak at (36 Hz, −18 Hz) in the cross-bicoherence proves that
the peak at 18 Hz and 36 Hz in C ′

l are indeed coupled.

4.2. Energy transfer between the forced cylinder and the fluid

The energy transferred between the forced cylinder and the fluid is discussed in this
section along with the measurements of the spectral magnitudes of parent modes
and combination modes in both crossflow and in-line forced oscillations. To reduce
the uncertainty of the magnitude measurements in the spectra, the magnitudes of
two adjacent peaks (0.4 Hz) are averaged to obtain the magnitude at the particular
frequency. The forcing amplitudes were increased gradually to provide the increasing
forcing energy to the cylinder, while the forcing frequency was kept constant at
fe = 14 Hz. The magnitudes of C ′

l and C ′
d spectra in increments of forcing amplitudes

are shown in figures 15 and 16 for crossflow and in-line forcing, respectively.



Nonlinear coupling of fluctuating drag and lift 351

0.16
(a)

0.12

0.08

C
l e

ne
rg

y
C

d 
en

er
gy

0.04

0

7
(×10–3)

8

6

5

4

3

2

1

0
0.03 0.04 0.05 0.06

Forcing amplitude, A/D Forcing amplitude, A/D
0.07 0.08 0.09 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.02 0.04 0.06 0.08

1.0

0.8

0.6

0.4

0.2

0
0.03

0.03

0.02

0.01

0

0.04 0.05 0.06 0.07 0.08 0.09

(b)

(c) (d)
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As the peak-to-peak crossflow forcing amplitude increases, the spectral magnitudes
of the forcing mode increase as shown in figure 15(a). The spectral magnitudes of
the von Kármán vortex-shedding modes do not change much, and initially decrease
at low forcing amplitudes (figure 15b). According to the symmetry rules of the mode
interaction, the spectral magnitudes of the combination modes measured in drag
spectra are coupled with the forcing and vortex-shedding modes when the cylinder
is undergoing crossflow oscillations. Although mode coupling does not guarantee an
energy transfer to the combination modes, the data in figure 15(c, d) show a trend
of increasing energy in both the difference mode and the sum mode with increasing
forcing amplitudes.

When the cylinder is forced in the in-line direction with increasing forcing
amplitudes, the results of the spectral magnitude measurements are similar to the
cross-forcing case except for the directionality, as shown in figure 16. The forcing
energy in drag increases as forcing amplitudes increase. The vortex-shedding modes
are saturated in energy of approximately O/E = 0.7, which is less than the energy of
O/E = 0.9 in the crossflow forcing case. The combination modes in the lift direction
in figure 16(c, d) show an increase in energy from the forced oscillations, particularly
in the sum mode.

In summary, the von Kármán vortex-shedding mode is not strongly affected by the
forcing at the levels used in this experiment. The difference and sum modes absorb
the energy from the forcing in both cases. The difference mode and the sum mode in
the crossflow forcing absorb energy in the in-line direction, while in the in-line
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forcing the difference and sum modes absorb energy in the crossflow direction. These
results also show the coupling between the fluctuating drag and lift forces.

5. Conclusion
Surface pressure fluctuations around a cylinder have been investigated when the

cylinder is undergoing forced oscillations in crossflow and in-line directions. They
show that the coupling between the fluctuating lift and drag forces exists, which is
consistent with the observations of Jong. Using bi-coherence spectra, the quadratic
nonlinear interactions between the von Kármán vortex-shedding modes and the
forcing modes were clearly observed. The sum and difference modes generated by the
parent modes play an important role in channelling energy into in-line and crossflow
directions.

The decomposition of the wake pressure fluctuations on the surface of the
cylinder into even and odd components has been performed. Furthermore, the
combination modes were predicted by two simple symmetry rules. An antisymmetric
mode interacting with a symmetric mode produces an antisymmetric mode, and
the interaction between either two antisymmetric modes or two symmetric modes
produces symmetric modes. When a cylinder is forced in the crossflow direction,
the antisymmetric forcing mode and the antisymmetric von Kármán vortex-shedding
mode generate the symmetric sum and difference modes which appear in the drag
spectrum. When the cylinder is forced in the in-line direction, the antisymmetric



Nonlinear coupling of fluctuating drag and lift 353

von Kármán vortex-shedding mode and the symmetric forcing mode generate the
combination modes appearing in a lift spectrum, which is antisymmetric.

A strong second harmonic (3fo) mode is observed in the fluctuating lift spectrum
when the cylinder is forced at the vortex-shedding frequency in the crossflow direction.
This is because antisymmetric 3fo modes are generated by the interaction between
the antisymmetric forcing mode and the symmetric 2fo mode. For cases of in-line
forcing, the first harmonic and the second harmonic mode can be antisymmetric
and symmetric simultaneously, thereby appearing in both the lift and drag spectra.
Their symmetric component is the result of the self-interaction of the antisymmetric
fundamental (fo) mode, or the first harmonic mode of the forcing mode (2fe). The
antisymmetric component is the result of the interaction between the antisymmetric
fundamental (fo) mode and symmetric forcing mode (fe).

The spectral magnitudes have been measured in each mode with increasing forcing
amplitudes to see how the energy is distributed to the combination modes. The von
Kármán vortex-shedding modes are essentially saturated in energy, while other modes
absorbed the energy from the forced oscillations. The difference and the sum modes
in the crossflow forced oscillations absorbed energy in the drag component, while
they absorbed energy in the lift component with the in-line forcing.

Support for this project by the Office of Naval Research under Grant N00014-94-
0538 monitored by Dr Tom Swean is gratefully acknowledged.
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